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WDR11, a WD Protein that Interacts
with Transcription Factor EMX1, Is Mutated in Idiopathic
Hypogonadotropic Hypogonadism and Kallmann Syndrome

Hyung-Goo Kim,1,4,15,* Jang-Won Ahn,2 Ingo Kurth,3,16 Reinhard Ullmann,4 Hyun-Taek Kim,5

Anita Kulharya,6 Kyung-Soo Ha,7 Yasuhide Itokawa,8 Irene Meliciani,9 Wolfgang Wenzel,9 Deresa Lee,2

Georg Rosenberger,3 Metin Ozata,10 David P. Bick,11 Richard J. Sherins,12 Takahiro Nagase,8

Mustafa Tekin,13,17 Soo-Hyun Kim,14 Cheol-Hee Kim,5 Hans-Hilger Ropers,4 James F. Gusella,15

Vera Kalscheuer,4 Cheol Yong Choi,2 and Lawrence C. Layman1,*

By defining the chromosomal breakpoint of a balanced t(10;12) translocation from a subject with Kallmann syndrome and scanning

genes in its vicinity in unrelated hypogonadal subjects, we have identified WDR11 as a gene involved in human puberty. We found

six patients with a total of five different heterozygous WDR11 missense mutations, including three alterations (A435T, R448Q, and

H690Q) in WD domains important for b propeller formation and protein-protein interaction. In addition, we discovered that

WDR11 interacts with EMX1, a homeodomain transcription factor involved in the development of olfactory neurons, and thatmissense

alterations reduce or abolish this interaction. Our findings suggest that impaired pubertal development in these patients results from

a deficiency of productive WDR11 protein interaction.
Introduction

Human puberty is a dynamic process that initiates

complex interactions of the hypothalamic-pituitary-

gonadal axis, the purpose of which is to produce sex

steroids for reproductive maturity and gametes for fertility.

Any disruption of the development or regulation of this

system, for which the hypothalamus serves as the master

regulator through its pulsatile release of gonadotropin-

releasing hormone (GnRH), can produce deleterious

consequences for successful reproduction.1 Patients with

idiopathic hypogonadotropic hypogonadism (IHH, MIM

146110) show clinical signs and symptoms of GnRH defi-

ciency: delayed puberty due to low sex steroid production

along with low levels of serum gonadotropins. Patients

with Kallmann syndrome (KS, MIM 308700, 147950,

244200, 610628, 612370, 612702) have IHH but also

display an impaired sense of smell, thought to be due to

the developmental failure of the migration of GnRH

neurons along the olfactory axonal projections.

IHH/KS is one of the most common causes of hypogo-

nadism and is genetically heterogeneous. Researchers
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have used a variety of strategies to find IHH- and/or KS-

causing mutations in a number of genes. Such strategies

have included linkage analysis, deletion mapping, and

candidate gene analysis. The discovery of a rare family

with males displaying both X-linked KS and ichthyosis

led to the identification of KAL1 (MIM 308700) by posi-

tional cloning,2,3 and characterization of deletions4

and a balanced translocation5 involving chromosome 8

facilitated the cloning of FGFR1 (KAL2, MIM 136350),

associated with both IHH and KS.6 Positional cloning in

consanguineous autosomal-recessive IHH families revealed

KISS1R (MIM 604161) encoding GPR54,7,8 TAC39 (MIM

162330), and TACR39 (MIM 162332) and candidate-gene

approaches identified mutations in GNRHR10,11 (MIM

138850), NELF12 (MIM 608137), CHD7(KAL5)13 (MIM

608892), FGF8 (KAL6)14 (MIM 600483), and GNRH115,16

(MIM 152760); analogous mouse phenotypes pointed to

PROKR2 (KAL3)17 (MIM 607123), and PROK2 (KAL4)17

(MIM 607002), as well as KISS1R.8 Despite these significant

advances in the past two decades, however, the genetic

etiology remains unknown for about two-thirds of all

IHH and KS patients.
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Figure 1. Balanced Chromosome Translocation
and FISH Mapping of the Chromosome 10 Break-
point
(A) Ideogram and composite chromosomes illus-
trating the balanced t(10;12)(q26.12;q13.11)dn
(revised in this paper from the original karyotypic
assessment, t(10;12)(q26.3;q13.1)dn) in the KS
patient.
(B) FISH mapping with BAC clone RP11-254K03,
labeled with SpectrumGreen to metaphase spreads
of the KS patient, resulted in hybridization to the
normal chromosome 10, as well as the der(10) and
der(12) chromosomes, indicating that the transloca-
tion breakpoint of chromosome 10 is located within
the sequence of this BAC clone.
To identify chromosomal rearrangements in IHH and KS

as a basis for disease gene identification, we previously kar-

yotyped 76 patients and found one male KS patient with

chromosome translocation reported as: 46,XY, t(10;12)

(q26.3;q13.1)dn (Figure 1A).18 The chromosome 10q26

region has been associated previously with abnormal

male genital development resulting from interstitial or

terminal deletions as well as a balanced translocation.

Abnormal development has included cryptorchidism,19,20

small testes,21 sperm defects and infertility,22 micropenis

and hypogonadism,23 hypogenitalism,24 and sparse sexual

hair.25 All of these phenotypic features overlap with char-

acteristics of IHH and KS. Importantly, a trisomy involving

10q26 has been reported in a KS patient with an unbal-

anced chromosome translocation,26 suggesting the pres-

ence of a new KS gene, which can involve dysregulation

as a result of either reduced or increased dosage, in this crit-

ical region. Therefore, we postulated that a single disease

gene disrupted or dysregulated by a position effect27 is

located at or near the 10q26 breakpoint in our KS patient

with a balanced translocation.
Material and Methods

Patients
IHHwas diagnosed inmales who were 18 years old or younger and

had delayed puberty, testosterone levels <100 ng/dl (normal is
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300–1100 ng/dl), and low or normal serum gonado-

tropins. In females, IHH was defined as primary

amenorrhea, nearly always with absent breast

development at R17 years of age and low estradiol

(<30 pg/ml).18,28 All patients had normal pituitary

function, including normal thyroid-stimulating

hormone, thyroxin, cortisol, and prolactin. No pitu-

itary tumor was present by radiographic imaging.

Complete IHH or KS is a more severe phenotype

defined as the complete lack of puberty with absent

breast development (Tanner 1) in females and testis

size %3 ml bilaterally in males. Incomplete IHH or

KS was defined as partial breast development in

females and testis size R 4 ml bilaterally in males.18

Olfaction was either tested with the University of

Pennyslvania Smell Identification Test when avail-
able or documented by history. Lymphoblastoid cell lines were

generated from patients, and DNA, RNA, and/or protein was

extracted by standard methods as described previously.18 All

patients signed an informed consent approved by the Human

Assurance Committee of the Medical College of Georgia.

Tissue Culture and Lymphoblastoid Cell Lines
Epstein-Barr-virus-immortalized lymphoblastoid cell lines used in

this study were established from peripheral blood lymphocytes

of individuals. Once established, these cell lines were cultured

in RPMI 1640 (Mediatech) supplemented with 10% FCS, 2 mM

L-glutamine, and 0.017 mg/ml benzylpenicillin (CLS) and grown

at 37�C with 5% CO2.

SNP Oligonucleotide Microarray Analysis
The Affymetrix Human Mapping 500K Array Set (Affymetrix,

Santa Clara, CA) is comprised of two arrays, each capable of geno-

typing on average 250,000 SNPs (approximately 262,000 for the

Nsp arrays and 238,000 for the Sty arrays). The mapping 500K

array set has a mean spacing of 5.8 kb. Specimens were assayed

with both arrays. The 500K assay was performed according to

the manufacturer’s protocol, beginning with 250 ng DNA. Ninety

mg of PCR product were fragmented and labeled. Hybridization

was carried out in the Affymetrix GeneChip hybridization oven

640. Posthybridization washing and processing were performed

with the Affymetrix GeneChip Fluidics Station 450. The arrays

were then scanned with the Affymetrix GeneChip Scanner 3000

7G. Image processing was performed with GCOS 1.4, and geno-

types were called with GTYPE 4.1 software and default settings.



Detection of copy-number changes was performed in the Chro-

mosome Copy Number Analysis Tool (CNAT) version 4.0, with

a reference set of 42 normal males. Data from the separate

Mapping 250K arrays were virtually combined after normalization

but before smoothing in CNAT 4.0.
Fluorescence In Situ Hybridization Analysis
The clones were labeled with either SpectrumOrange or Spectrum

Green direct-labeled dUTP via the nick-translation Labeling Kit

(Abbott Molecular). The procedure involved incubation of the

DNA extracted from the clone with dATP, dCTP, dGTP, and fluores-

cent dUTP in the presence of DNA polymerase I and DNase I at

15�C for 8–16 hr. Heating the mixture in a 70�C water bath for

10 min stopped the reaction.

The slides from the harvested lymphoblastoid cell suspension

were prepared according to standard procedures. The cells on the

slides were denatured in 70% formamide and 23 SSC at 70�C for

3 min and dehydrated serially in cold ethanol at increasing

concentrations up to absolute ethanol. The fluorescently labeled

probe mix was then applied to the slides, which were covered

with a coverslip and hybridized overnight in a moist chamber at

37�C. After overnight hybridization, the slides were washed in

a solution of 43 SSC and 0.3% NP 40 at 72�C for 2 min and

then washed with 23 SSC and 0.1% NP40 at room temperature

for 2 min. The metaphases were counterstained with 0.4 mg/ml

DAPI (4,6-diamidino-2-phenylindole) and analyzed under a fluo-

rescence microscope. The images were photographed with

a CCD camera with an Applied Imaging system.

Mouse In Situ Hybridization Analysis
Two primer pairs were used for amplification of two independent

Wdr11 probes spanning nucleotides 641–1035 and 2892–3492

of the murine Wdr11 transcript (NM_172255.3). The primers

used are listed in Table S4. Amplicons were ligated to a Topo-TA

vector (Invitrogen) and subcloned into pBluescript via EcoRI

and XbaI (restriction sites are underlined in Table S4). The probes

were labeled with [a-35S]UTP for hybridization on sections or

with Digoxigenin29 for whole-mount in situ hybridization as

well as for cryosections. Murine embryos were frozen on solid

CO2, and 10 mm sections were prepared on a cryostat. Adult

mouse brains were sectioned at 15 mm. Sections hybridized

with the [a-35S]UTP probe were exposed to Kodak Biomax MR

film for 3 days. No specific signals were detected with the

respective sense probes. Whole-mount in situ hybridization with

Digoxigenin-UTP-labeled probes was performed on total mouse

embryos with the in situ probe spanning nucleotides 2892–

3492. The day of plug was not counted for specification of embry-

onic stages.
Isolation of Zebrafish wdr11 Gene and Whole-Mount

In Situ Hybridization
The zebrafish wdr11 gene (XM_682139.3) was isolated from the

24 hpf zebrafish cDNA library by RT-PCR with a BamHI-linked

forward primer and an NcoI-linked reverse primer (Table S4;

restriction sites are underlined), subcloned into the pGEM T-easy

vector, and then sequenced by automatic sequencer. To examine

the spatiotemporal expression patterns of wdr11, whole-mount

in situ hybridization was performed as previously described.30

Antisense digoxigenin-labeled RNA probes for wdr11 and emx131

were produced with a DIG-RNA labeling kit (Roche, Germany)

according to the manufacturer’s instructions.
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Mutation Analysis
Genomic DNA extracted from 201 unrelated IHH and/or KS

patients was amplified with WDR11 primer pairs flanking the 29

exons and splice junction sites by nested PCR. Oligo 6.0 or Primer

3 was used for primer design, and conditions were optimized for

each PCR as described previously.11,13 Nested-PCR products were

electrophoresed on agarose gels, precipitated via ethanol, quanti-

fied, and sequenced with the Big Dye Terminator Kit (Applied

Biosystems; Foster City, CA).32 Sequencing reactions were purified

with Centrosep columns, lyophilized, and placed on an ABI 3730

automated DNA sequencer (Applied Biosystems; Foster City, CA).

All exons were sequenced at least twice; mutations were confirmed

3-4 times by independent PCR. Any putative mutation was

sequenced in >420 healthy white controls and >400 healthy

Turkish controls. The CodonCode Aligner Program (CodonCode

Corporation; Dedham, MA) was used for analysis of the

sequencing data.

Semiquantitative RT-PCR in Rat Tissue
Total RNAwas extracted from lymphoblastoid cell lines and tissues

with TRI Reagent (Molecular Research Center) and treated with

DNase I (QIAGEN). We primed 100 ng of RNA with gene-specific

primers by using Superscript III one-step RT-PCR kit (Invitrogen)

and Mastercycler Gradient (Eppendorf). Typical conditions were

as follows: 60�C for 30min followed by 94�C for 2min (one cycle),

then 94�C for 15 s followed by 60�C for 30 s and 68�C for 50 s

(30 cycles). Then 68�C for 5 min followed by cooling to 4�C. For
semiquantitative RT-PCR analysis in rat tissues (Figure S1), we

used two primers to amplify nucleotides 2651–3357 of the rat

WDR11 transcript (XM_219377.5) (Table S4).

Yeast Two-hybrid Screening
For bait construction, a DNA fragment encoding amino acids

1–830 of WDR11 was subcloned into the BamHI and SalI sites of

pGBKT7 (Clontech). Approximately 5 3 106 transformants from

a mouse-brain cDNA library (Clontech) were screened in the

AH109 yeast strain. The positive colonies were confirmed with

b-galactosidase colony lift assays. The yeast plasmids were isolated

and transformed into Escherichia coli DH5a cells. We cotrans-

formed the isolated yeast DNA with a bait plasmid into AH109

to verify the interactions between WDR11 and the interacting

proteins.

Preparation of WDR11 Mutant Constructs
A pFN21AA1351 clone that included WDR11 open-reading frame

(ORF) sequence with the GenBank accession number of AB385454

was used for construction of the WDR11 mutant. DNA fragments

containing a nucleotide substitution were amplified by two-step

PCRs in which pFN21AA1351 served as a template; two separated

DNA fragments were amplified by the first PCR with one of the

mutant primers containing a nucleotide substitution (mR1 or

mF1 series) and the corresponding opposite outside primer (F01,

F06, R01 or R02), then two resultant amplified PCR products

were combined by the second PCR with the outside primers and

cloned into pUC118 vector. The cloned mutant DNA fragment

was cut with EcoNI for m1, m2, m3, and m4 constructs, and the

mutant EcoNI fragment was inserted between EcoNI sites of the

WDR11 ORF. For m5 and m6, the cloned DNA fragment was cut

with SwaI and PvuII, and the 1422 bp SwaI-PvuII fragment of

WDR11 was replaced with the mutant fragment. The sequences

of primers used for the construction are listed in Table S4.
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Plasmid Construction
The full-length human WDR11 and EMX1 clones were purchased

from Openbiosystems (clone ID 34306203 and 5260039, respec-

tively). The full ORFs of WDR11 and EMX1 were amplified from

purchased cDNA clones by PCR with specific primers, and the

DNA fragment was inserted into BamHI/NotI and EcoRI/XhoI sites

of pEntr3C, respectively. The Myc-WDR11, HA-EMX1, and GST-

EMX1 plasmids were constructed by Gateway Technology (Invi-

trogen) with pEntr-WDR11 and pEntr-EMX1.

Coimmunoprecipitation and Immunoblotting
Coimmunoprecipitation was performed after the lysis of 2 3

107 cells with lysis buffer (50mMHEPES, 150mMNaCl, 10% glyc-

erol, 1% Nonidet P-40, and 1 mM EDTA). After incubation on ice

for 10 min and centrifugation for 10 min at 4�C, equal volumes of

protein were incubated overnight with antibody and protein A

G-Sepharose beads at 4�C on a rotating wheel. The beads were

washed three times with lysis buffer. The whole-cell lysates

and immunoprecipitates were separated by SDS-PAGE and then

transferred onto polyvinylidene difluoride membranes. The

membranes were immunoblotted with anti-Myc (Invitrogen) or

anti-HA (Invitrogen) antibodies.

In Vitro Pull-Down Assays
The GST-fusion plasmids were expressed in E. coli. BL21(DE3) cells

and were purified with glutathione-Sepharose beads according to

the instructions of the manufacturer. The Myc-EMX1 proteins

were synthesized via the coupled TNT in vitro translation system

(Promega, Madison, WI). We performed pull-down assays by incu-

bating equal amounts of GST or GST-WDR11 fusion proteins

immobilized onto glutathione-Sepharose beads with in vitro

translated Myc-Emx1 and washing the beads three times with

phosphate-buffered saline and 0.5% Triton X-100. After washing,

the bound proteins were resolved by SDS-PAGE and detected via

immunoblotting with anti-Myc antibody.

Immunohistochemistry
U2OS cells were transfected with expression plasmids encoding

HA-EMX1 and GFP-WDR11. Twenty-four hours after transfection,

cells were treated with leptomycin B (10 ng/ml) for 12 hr before

being fixed with 4% paraformaldehyde for 5 min and incubated

with anti-HA antibody. Fluorescence microscopy was conducted

with a Zeiss Axioskop 2 microscope; excitation wavelengths of

543 nm (rhodamine red) and 488 nm (GFP) were used. The

acquired images were processed with Adobe Photoshop. For

subcellular localization for FCNB4-hTERT cells, approximately

2 ml of cell suspension was plated into each well of a microscopy

cover slide, incubated for 24 hr in a 37�C CO2 incubator, and

then fixed with 4% paraformaldehyde (PFA) for 5 min at room

temperature. Cells were washed three times with PBS and permea-

bilized with 0.1% Triton X-100 in PBS for 5 min. After two washes

with PBS, nonspecific binding sites were blocked with 1% BSA

(Sigma) in PBS for 5 min. Samples were then rinsed with PBS

and incubated overnight at 4�C with primary antibody. After

being washed with PBS, samples were incubated for 1 hr at room

temperature with the appropriate Alexa Fluor dye (Molecular

Probes)-coupled anti-rabbit 488 (green) or anti-mouse 589 (red)

secondary antibodies. After three PBS washes, nuclei were counter-

stained with To-pro3 (1 nM). Cover slips were mounted with anti-

fade vector shield (Molecular Probe) reagent and viewed with the

Zeiss LSM 510 Meta Confocal Microscope.
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Exon Trapping
We used the exon-trapping system (Invitrogen GIBCO) to investi-

gate the effect of the heterozygous c.2932A>C nucleotide variant

(p.K978Q) in the acceptor splice site of exon 24 of WDR11.

A genomic fragment of 2411 bp encompassing exons 23–25 along

with flanking intronic sequences and a 1286 bp fragment

comprising exon 25 along with flanking intronic sequences were

amplified by PCR with two primer pairs (Table S4). The resulting

PCR products were cloned into exon-trapping vector pSPL3 via

restriction sites EcoRI (50 end) and BamHI (30 end). We verified

sequences for all constructs to exclude PCR-induced mutations

and to select constructs with or without the splice site variant

c.2932A>C (p.K978Q). COS-7 cells were grown in 100 mm dishes

in DMEM (Invitrogen) supplemented with 10% fetal calf serum

(Invitrogen) in a 10% CO2 atmosphere at 37�C. At approximately

60% confluency, cells were each transfected with 8 mg of exon-

trapping construct DNA via Lipofectamine 2000 (Invitrogen).

Cells were collected 30 hr after transfection, and cytoplasmic

RNA was isolated with RNeasy (QIAGEN) according to the manu-

facturer’s instructions. After transcription into cDNA via Omni-

script Reverse Transcriptase (QIAGEN), two rounds of PCR with

vector-specific oligonucleotides were performed. PCR products

were subcloned into TA cloning vector pCR2.1-Topo (Invitrogen)

and directly sequenced with the ABI BigDye Terminator

Sequencing Kit (Applied Biosystems) and the automated capillary

sequencer ABI 3130 (Applied Biosystems).

Anti-WDR11 Antibody Generation
A new WDR11 polyclonal antibody was generated against the

N-terminal residues 32–48 of NP_060587.8 (QGLIAYGCHSLVV

VIDS); an N-terminal cysteine was added for conjugation

purposes. Rabbits were injected with Freund’s adjuvant containing

the peptide sequence. After the second bleed, affinity purification

was performed. The peptide sequence used fop raising the anti-

body was conserved in ten species (human, chimpanzee, cow,

horse, panda, pig, dog, rat, mouse, and rabbit).

Array Painting
Flow-sorting of metaphase chromosomes was performed as

described previously.33 Both derivative chromosomes were ampli-

fied with the GenomiPhi V2 DNA Amplification kit (GE Health-

care, Piscataway, NJ, USA) according to the manufacturer’s

protocol. One microgram of each amplification product was

labeled with Cy3 or Cy5 via Agilent’s Genomic DNA Enzymatic

Labeling Kit Plus (Agilent). To each labeling reaction, adding 100

ng of genomic control DNA ensured proper placement of the

grid after image analysis. A customized oligonucleotide array

that represented chromosomal regions chr10:121,855,186–122,

255,228 and chr12:45,828,906–46,226,893 (hg18) was designed

by means of eArray (Agilent, Santa Clara, CA); there was an

average oligonucleotide spacing of 200–300 bases. Hybridization

and washing steps were performed as previously described.34

Quantitative Real-Time RT-PCR (RT-qPCR) of WDR11

in the t(10;12) Patient
cDNA from lymphoblastoid cells was used for real-time RT-qPCR

with the StepOnePlus Real-Time PCR system (Applied Biosystems)

and Power SYBR Green PCR Master Mix (Applied Biosystems) and

two primer pairs (WDR11-1:3117forwardþ3213reverse;WDR11-2:

3221forwardþ3370reverse; Table S4). RT-qPCR was performed in

triplicate with same amount of cDNA, and WDR11 levels were
8, 2010
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Figure 2. Genetic Mapping of the 10q26 Locus Involved in IHH and KS
(A) The translocation breakpoint, depicted as a crocodile head, is located between SEC23IP and PPAPDC1A. Horizontal bars at 10q26.12
show BACs used for FISHmapping. The size and location of BACs are to scale. The blue bar depicts a BAC clone spanning the breakpoint.
Four positional candidate genes located proximal and distal to the breakpoint are shown as arrows in a 2 Mb region.
(B) Exon and intron structure of the 58 kb gene WDR11 (NM_018117.11). Locations of human missense mutations are identified in
sporadic IHH and KS patients. Notable exons are shown to scale as blue rectangles and are numbered with exon size. The sizes of introns
are not to scale. Mutation F1150L was identified in two independent sporadic IHH patients.
normalized to GAPDH expression. WDR11 levels in t(10;12) were

normalized to those in a male control with StepOne Software

(Applied Biosystems).

Immunoblot Analysis of WDR11 in the t(10;12)

Patient
Cells were washed with PBS twice and lysed in RIPA buffer

(PIERCE) containing completeEDTA-freeprotease inhibitor (Roche

Diagnostics). Total cellular lysates were separated by SDS-polyacry-

lamide gel electrophoresis and transferred to nitrocellulose

membranes. Membranes were incubated with primary antibody

overnight at 4�C.Membranes were washedwith TBS-T buffer three

times and incubated with a secondary antibody conjugated to

horseradish peroxidase for 2 hr at room temperature. After three

washeswith TBS-T buffer, the blotswere visualized by an enhanced

chemiluminescence method (GE Healthcare).
Results

Delineation of the Breakpoint Region on 10q26

Affymetrix Human Mapping 500K Array SNP oligonucleo-

tide microarray analysis (SOMA) of patient DNA was
The Americ
consistent with a balanced translocation and excluded

copy-number variation (CNV) as the cause of the IHH or

KS phenotype (data not shown). To identify the potentially

disrupted genes, we first mapped the translocation break-

points by using fluorescence in situ hybridization (FISH).

Two BAC clones, RP11-592D19 in 10q25.3 and RP11-

91E2 in 10q26.3, mapped as centromeric and telomeric,

respectively, to the chromosome 10 breakpoint and thus

flanked it within a 16.4 Mb region. Sequential rounds of

FISH with BACs within this region narrowed the candidate

region until a breakpoint-crossing BAC clone was identi-

fied. Of nineteen BACs examined, three were proximal

and fifteen were distal to the breakpoint, whereas RP11-

254K03 hybridized to the normal chromosome 10 and

both der(10) and der(12) chromosomes, indicating that it

spans the translocation breakpoint, as shown in Figures

1B and 2A.
Delineation of the Breakpoint Region on 12q13

BAC clones RP11-88L2 from 12q12 and RP11-762I7 from

12q13.2, used as starting clones for FISH,mapped proximal
an Journal of Human Genetics 87, 465–479, October 8, 2010 469
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cow          VCNRNSRSSSSGV    NDEQVYHLTVEGN    LHSMRYFDRAALF
horse        VCNRNSRNSSSGV    NDEQVYHLTVEGN    LHSMRYFDRAALF
panda        VCNRNSRSSSSGV    NDEQVYHLTVEGN    LHSMRYFDRAALF
pig          VCSRNSRNSSSGV    NDEQVYHLTVEGN    LHSMRYFDRAALF
dog          ICNRNSRNNSSGV    NDEQVYHLTVEGN    LHSMRYFDRAALF
rat          VCSRNARNSSSAV    NDEQVYHLTVEGN    LHSMRYFDRAALF  
mouse        VCSRNARNSS-GV    NDEQVYHLTVEGN    LHSMRYFDRAALF
rabbit       VCNRNSRSSSSGV    NDEQVYHLTVEGN    LHSMRYFDRAALF
opossum      VSYRNYRNSSSGT TDEQVYHLTVEGN    LHSMRYFDRAALF
chicken      VASRNPRNSSSSA ADEQVYHLTVEGN    LHSMRYFDRAALF
finch        ISGRNLRNSSSSA ADEQVYHLTVEGN    LHSMRYFDRAALF

WD domain  

   (652-691) 

// // 

R395 H690 F1150 

Figure 3. Sequences of the Translocation Breakpoints and
Protein Sequence Alignment of WDR11 Orthologs
(A) Genomic DNA sequence at the breakpoints from the normal
and derivative chromosomes. The breakpoint on chromosome
10 is located between nucleotides 122,053,649 and 122,053,650,
whereas on chromosome 12 it occurs between nucleotides
46,038,271 and 46,038,272 (UCSC Genome Browser NCBI
hg18). The junction sequence reveals a 4 bp duplication at the
breakpoint of the der(10) chromosome and a 1 bp deletion and
a 57 bp insertion at the junction on the der(12) chromosome.
(B) ClustalW multiple alignment of partial protein sequences of
WDR11 orthologs. The positions of three residues affected by
missense mutations of WDR11 are marked by arrows and red
letters in the corresponding segments of the multiple alignment.
The amino acid residues that differ from the sequence of the
human WDR11 protein are indicated in blue, and the ninth WD
domain is indicated under the panel. All three mutated residues
are evolutionarily fully conserved in all 13 available WDR11
orthologs.
and distal, respectively, to the breakpoint, confining the

chromosome 12 breakpoint within an 11.7 Mb region.

FISH experiments with twenty BACs within the region

revealed twelve proximal and seven distal to the break-

point, as well as RP11-464D5, which hybridized to the nor-

mal chromosome 12 and both der(10) and der(12) chromo-

somes, indicating that it spans the translocationbreakpoint

(data not shown). Sequencing of the breakpoint cloned as

described below confirmed localization of the junction

sequence within RP11-464D5, as shown in Figure 3A.

Refining the Breakpoint Regions by Array Painting

and Cloning of Junction Fragments

After narrowing down both breakpoint regions by FISH

and before finding the breakpoint spanning clones, we per-

formed array painting by using a customized oligonucleo-
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tide array that represented chromosomal regions chr10:

121,855,186–122,255,228 and chr12:45,828,906–46,226,

893 (hg18) with an average oligonucleotide spacing of

200–300 bases to determine the breakpoint regions more

precisely and eventually clone the junction fragments.

Based upon the array-painting results, the breakpoint

regions were refined to 2.7 kb (between nucleotide posi-

tions 122,053,148 and 122,055,901) in 10q26.12 and

4.2 kb (between nucleotide positions 46,034,656 and

46,038,863 in 12q13.11) (UCSC Genome Browser, NCBI

Build 36/hg18 assembly), resulting in restatement of the

previously cytogenetically assigned karyotype to 46,XY,

t(10;12)(q26.12;q13.11)dn. Five forward primers (12q13.2-

10kb-4208f, -4562f, -5338f, -5961f, and -7351f) designed

from 10 kb containing the 4.2 kb breakpoint region at

12q13.11 and three reverse primers (10q26-10kb-3497r,

-5710r, and -5750r) designed from 10 kb encompassing

the 2.7 kb breakpoint region at 10q26.12 were paired

in a long-range PCR (QIAGEN LongRange PCR Kit 250).

Annealing was performed at 60�C for 30 s with an exten-

sion for 7 min. All fifteen PCR reactions produced

amplicons with sizes from 1.7–7.1 kb (consistent with

the interprimer distances on each chromosome) from the

subject’s DNA but not from that of a normal control

male. Therefore, the breakpoints at 10q26.12 and

12q13.11 were narrowed to 590 bp and 2.2 kb, respec-

tively, confirming the array-painting result. Finally, the

junction fragment of ~1.8 kb from der(12) was amplified

by normal PCR from one primer pair of 12q13.2-10kb-

7351forward and 10q26-10kb-3497reverse and confirmed

by sequencing and subsequent BLAST searching.

To amplify the junction fragment of der(10), we paired

five forward primers (10q26-10kb -1851f, -2367f, -2801f,

-2851f, and -2914f) designed from the 10 kb breakpoint

region at 10q26 and five reverse primers (12q13.2-10kb-

7630r, -8180r, -8836r, -9664r, and -9890r) from the 10 kb

breakpoint region at 12q13.2 in a long-range PCR, which

produced amplicons of 1–2.5 kb in combinations with

two of the reverse primers (12q13.2-10kb-9664r and

-9890r) but no amplicons with the other three (12q13.2-

10kb-7630r, -8180r, and -8836r), further refining the break-

point region. The 2 kb junction fragment of der(10) was

amplified by primer set 10q26-10kb-2367f and 12q13.2-

10kb-9890r. The partial sequences from chromosomes

10 and 12 of this junction fragment were confirmed by

sequencing and BLAST searching. The breakpoint on chro-

mosome 12 is located between nucleotides 46,038,271 and

46,038,272, whereas on chromosome 10 it occurs between

nucleotides 122,053,649 and 122,053,650, 547 kb from

the 50end of WDR11. At the junction of the der(10) frag-

ment, there was a CTTT duplication, and at the junction

of der(12) fragment, there was a 1 bp G deletion and a

57 bp insertion (Figure 3A).

Candidate Gene Expression Pattern in Rat

The translocation did not directly disrupt a gene on either

chromosome 10 or 12, but on the basis of the common
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chromosomal location associated with IHH and KS pheno-

types, we hypothesized that 10q26 was more likely to

harbor the causative gene; therefore, we did not study

the 12q region further.

On 10q26.12, four candidate genes (FGFR2, PPAPDC1A,

SEC23IP, and WDR11) were present in the vicinity of the

breakpoint (Figure 2A). We examined their expression in

the rat ovary, testis, olfactory bulb, hypothalamic preoptic

area, medial basal hypothalamus, anterior pituitary, piri-

form cortex, temporal cortex, prefrontal cortex, hippo-

campus, and cerebellum using semiquantitative RT-PCR

analysis. All four genes were expressed in all tissues

tested; the highest Wdr11 (XM_219377.5) expression, in

decreasing order, was in the ovary, olfactory bulb, and piri-

form cortex (Figure S1).

Mutation Screening of Positional Candidate Genes

We screened 123 IHH and KS patients for FGFR2 (MIM

176943) mutations by direct sequencing of all coding

exons and splice junctions (exons 2–18 of NM_022970.3

and the additional exon 8 of NM_000141.4) and found

only known polymorphisms rs755793, rs1047100,

rs3135774, rs41293763, and rs2278202. Exons 1–7 of

PPAPDC1A (NM_001030059.1) were directly sequenced

in 60 IHH or KS patients and were likewise negative

for mutations other than reported polymorphisms

rs10886691 and rs1047369 and additional synonymous

variants F15F, L194L, and P270P. Exons 1–18 of SEC23IP

(NM_007190.2) were screened in 120 IHH or KS patients.

Only known polymorphisms rs34157476, rs3859163,

rs3740569, rs3740570, rs17099368, rs34824340, rs2475298,

rs2271123, rs12771873, rs58111481, and rs34826964 were

seen as variants. Additionally, heterozygous c.760G>T of

SEC23IP (p. V254F) was identified in one KS female and

two IHHmales butnot ina secondKS femalewithin a family,

indicating a lack of segregation with IHH or KS and suggest-

ing that it is a rare sequence variant (absent from182normal

white controls). Furthermore, heterozygous c.1191þ38A>C

identified in a male IHH patient was inherited from one of

two healthy parents, both of whom are heterozygous for

the same change, suggesting that it is also a polymorphism.

DNA sequencing of the protein-coding exons and splice

junctions of theWDR11 gene with 29 exons (NM_018117.

11, MIM 606417) was performed in 201 IHH or KS patients.

Five different heterozygous missense variants that appear

to be pathogenic mutations were identified in six unre-

lated probands (3%) (Table 1); none of these variants was

present in R420 normal white controls or an additional

402 ethnically matched controls for the one proband

who is of Turkish origin. Interestingly, the putative

WDR11 mutations were found in both IHH (n ¼ 5) and

KS (n ¼ 1) patients, as shown in Table 1, and are described

below. We identified one additional heterozygous change,

c.2932A>C (p.K978Q), in a Turkish male IHH patient.

Residue K978 is completely conserved in all 13 higher

vertebrates (Figure S2) and this same nucleotide change

was not identified in an initial set of 180 white and Turkish
The Americ
controls. Although the K978Q alteration involves a base

change in the first nucleotide of exon 24, exon-trapping

experiments did not reveal any aberrant splicing in vitro

(data not shown), suggesting that the variant does not

affect splicing differences in vivo. Sequencing of additional

Turkish control subjects identified the c.2932A>C variant

in two Turkish controls (2/402). Thus, c.2932A>C

(p.K978Q) is a sequence variant that is not sufficient to

cause IHH or KS and has the characteristics of a rare poly-

morphism (Table S1). Whether it is associated with

increased risk of IHH or KS will require investigation of

additional IHH, KS, and ethnically matched control

subjects.

The five putative heterozygous missense variants that

were observed in IHH and KS patients but absent from all

controls are c.1183C>T (p.R395W) in an IHH male,

c.1303G>A (p.A435T) in a Turkish IHH male, c.1343G>A

(p.R448Q) in an IHH female, c.2070T>A (p.H690Q) in

a KS male, and c.3450T>G (p.F1150L) in one male and

one female IHH patient. Three of the missense changes

altering amino acid residues R395, H690, and F1150 are

completely conserved in all higher vertebrates (Figure 3B).

Two unrelated patients had an identical heterozygous

missense alteration, F1150L, so we performed haplotype

analysis with seven informative SNP markers—rs7077126,

rs10886800, rs41287988, rs1045154, rs12259815, rs10871,

and rs1045170—from theWDR11 30-UTR region.Genotyp-

ing of these two patients (C17 and C100) indicated that

they share a haplotype around WDR11 and are therefore

likely to be descended from a recent common ancestor

(data not shown). All identified SNPs, including ten novel

SNPs inWDR11, are listed in Table S1.

RT-qPCR and Immunoblot Analysis of WDR11

in the t(10;12) Patient

RT-qPCR and immunoblot analysis with antibody that we

generated demonstrated reductions of approximately 20%

for transcript and 10% for WDR11 in the lymphoblast cell

line from our translocation patient compared to two

gender-matched controls (Figure S3). Because this line

has one normal allele and one translocated allele, if the

entire effect were due to reduction of the mRNA from

the translocated chromosome, as would be suspected, the

20% overall reduction in transcript would correspond to

an approximate 40% reduction in expression from the

translocated chromosome. Although this reduction is

modest, it does demonstrate proof-of-principle for a poten-

tial position effect of the breakpoint, which is about 547 kb

50 of WDR11. It is conceivable that, because of tissue-

specific factors, the magnitude of the reduction might be

significantly greater in some other tissues of the transloca-

tion subject, especially those tissues involved in the neuro-

endocrine control of reproduction, but it is not possible to

measure this directly because the lymphoblasts represent

the only tissue available from the subject. However, the

small effect in lymphoblasts is consistent with an effect

of the translocation on expression of this gene and
an Journal of Human Genetics 87, 465–479, October 8, 2010 471



Table 1. WDR11 Mutations in IHH and KS Patients

Patient
Gender and
Phenotype

Geographic
Origin

Location
(Exon/Intron)

Nucleotide
change
(NM_018117.11)

Amino Acid
Change
(NP_060587.8)

Class of
Mutation Confirmatory Method

C37 Male/KS; complete
IHH; anosmia;testes,
1 ml bilaterally

United States Translocation
breakpoint is
547 kb away
from the 50

end of WDR11

_ _ chromosomal
structure mutation
as a balanced
translocation-
t(10;12)
(q26.12;q13.11)dn

FISH, array painting,
and sequencing of
junction fragment;
de novo.

C71 Male/complete IHH;
testes, 2 ml; FSH ¼
3 mIU/ml; LH ¼
1.2 mIU/ml

United States Exon 8 c.1183C>T R395W missense 0/420 white controls;
detrimental in protein
modeling; invariant
in 13 available WDR11
orthologs.

T87 Male/IHH; complete
IHH; bilat
cryptorchidism;
FSH ¼ 0.3 mIU/ml;
LH < 0.3 mIU/ml

Turkey Exon 10 c.1303G>A A435T missense 0/426 white controls;
0/402 Turkish controls;
within sixth WD domain;
detrimental in protein
modeling; abolished
EMX1 binding.

C99 Female/IHH United States Exon 10 c.1343G>A R448Q missense 0/426 white controls;
within sixth WD domain;
detrimental in protein
modeling; reduced EMX1
binding; predicted to
destabilize the WDR11
dimer and impair actin
binding of the complex.

C127 Male/KS; anosmia United States Exon 16 c.2070T>A H690Q missense 0/420 white controls;
within ninth WD
domain; detrimental
in protein modeling;
abolished EMX1 binding;
invariant in 13 available
WDR11 orthologs.

C17 Male/IHH; incomplete
IHH; testes, 35, 25 ml;
FSH ¼ 6 mIU/ml

United States Exon 28 c.3450T>G F1150L missense 0/420 white controls;
invariant in 13 available
WDR11 orthologs.

C100 Female/IHH; complete
IHH; breasts: Tanner 1;
FSH < 1 mIU/ml;
LH < 1 mIU/ml

United States Exon 28 c.3450T>G F1150L missense 0/420 white controls;
invariant in 13 available
WDR11 orthologs.

Complete IHH refers to the complete absence of sexual development, whereas incomplete IHH indicates partial pubertal development. Testis size is given (normal
is 15–25 ml) when available. Breast development is given when available—Tanner 1 indicates no breast buds.
therefore with its role in generating the phenotype in this

patient.

Protein Structure Modeling of WDR11

To explore the potential structural features of WDR11, we

generated a protein model by using multiple sequence

alignment (ClustalW35) based on homology to the C. ele-

gans Homolog of Yeast Actin Interacting Protein 1 (AIP1)

(PDB code 1NR0),36 shown in Figure S4. The close struc-

tural similarity of the model of WDR11, which features

two b propeller structures in each protein chain36,37 (Fig-

ure 4A), with the AIP1 dimer (PDB code 1PGU), indicates

that WDR11 will also be an actin-binding protein38

(Figure S4). WDR11 contains twelve WD domains, nine

(second to tenth repeats) that are confirmed on the basis

of direct comparison with the template structure of AIP1

(Figures 4A and 4B) and three additional repeats (first,

11th, and 12th) detected by sequence comparison outside
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the region of the structural model (Figures 4A and 4B;

Table S2). Like AIP1, WDR11 is predicted to exhibit two

b propellers; WD domains 2–6 are predicted to constitute

the first, andWD domains 7–10 are predicted to constitute

the second (Figure 4A). The structural model for WDR11

overlaps well with the known AIP1 structure (Figure S4).

This model predicts that WDR11 has twelve WD domains

and that nine of them (second through tenth) participate

in the genesis of two consecutive b propellers.

WDR11 Interacts and Colocalizes with EMX1

In Vivo and In Vitro

WDR11 is a 1,224 amino acid protein that contains

multiple WD domains likely to mediate interaction with

protein-binding partners (NCBI Conserved Domain Data-

base cl02567). Consequently, we performed a yeast two-

hybrid screen to identify potential cellular proteins whose

interaction with WDR11 might be disrupted by the
8, 2010



A

B

Figure 4. WDR11 Structural Model Indi-
cating the Mutation Sites
(A) Model spanning amino acids 70–739 of
WDR11. The model was obtained by align-
ment to 1NR0 via ClustalW and MOE
(Molecular Operating Environment [MOE
2004.03], Chemical Computing Group,
Montreal, Quebec, Canada H3B 3X3).
WDR11 forms a double propeller structure,
in which the WD domains indicated in (B)
form the main structural constituent. The
two propeller axes are tilted with respect
to one another, so only the propeller struc-
ture on the left is clearly visible in this
representation. Colors indicate side chains
of the four mutations within the modeled
sequence region, as follows: WD domains
predicted on the basis of the model
(green), on the basis of SMART (pink), or
both (cyan). The sites of the mutations
are indicated in orange.
(B) Positions of five missense mutations in
WDR11; WD domains are depicted as
ovals. The WD domains predicted on the
basis of the model and by SMART are
depicted in green and pink, respectively.
The relative sizes and locations of WD
domains are to scale. WDR11 contains
twelveWD domains, nine (second to tenth
repeats) that are confirmed on the basis of
direct comparison with the template struc-
ture of AIP1 and three additional repeats
(first, 11th, and 12th) detected by sequence
comparison outside the region of the struc-
tural model. Note that three mutations
directly affect WD domains 6 and 9.
apparent missense mutations in IHH and KS patients. We

identified EMX1 (MIM 600034), a human ortholog of

Drosophila ems (empty spiracles), as a WDR11-interacting

protein. Although four other proteins, including Hey1

(hairy/enhancer-of-split related with YRPW motif 1, MIM

602953), Tagln2 (Transgelin 2, MIM 604634), Ndrg4

(N-Myc downstream-regulated gene 4), and Nrxn3 (neu-

rexin 3, MIM 600567) were also identified as potential

WDR11 binding partners, we focused on EMX1 for further

studies because of its functional relevance to the devel-

oping nervous system.39–43

Specific interaction between WDR11 and EMX1 was

revealed by cotransformation of yeast with an expression

plasmid encodingWDR11 fused to the GAL4 DNA-binding

domain and a plasmid encoding EMX1 fused to the

GAL4 activation domain (Figure 5A). The interaction was

confirmed in mammalian cells by coimmunoprecipitation

assays, which demonstrated that HA-tagged EMX1 was

recovered from immunoprecipitates of coexpressed Myc-

WDR11 (Figure 5B), and further confirmed by GST pull-

down analysis (Figure 5C).

To define the particular WDR11 domains necessary for

interaction with EMX1, we generated WDR11 deletion

mutants and performed GST pull-down assays to assess

EMX1 binding. Both the N terminus and the central

portion of WDR11 bound to EMX1, whereas the

C terminus did not (Figure 5E). We next tested whether
The Americ
any of the four missense mutations in the N terminus

and the central region of WDR11 interfered with EMX1

binding in vitro. Coimmunoprecipitation of EMX1 with

the translated proteins from each of the four WDR11

mutant constructs demonstrated that mutants 2 (A435T)

and 4 (H690Q) did not associate with EMX1 in mamma-

lian cells, whereas mutant 3 (R448Q) reduced, but did

not eliminate, the EMX1 binding. Mutant 1 (R395W)

had no effect upon EMX1 binding (Figure 5F).

Subcellular Localization of WDR11 and EMX1

Because EMX1 is a homeodomain transcription factor that

participates in the development of olfactory neurons,40 we

examined the subcellular localization of both EMX1 and

WDR11 in a physiologically relevant human cell system.

Immunostaining with a polyclonal anti-WDR11 antibody

(directed to N-terminal residues 32–48 of NP_060587.8:

QGLIAYGCHSLVVVIDS) localized WDR11 to the cyto-

plasm of FCNB4-hTERT cells, immortalized human embry-

onic olfactory GnRH neuroblasts isolated from olfactory

epithelium of an 8- to 12-week-old human embryo

(data not shown).44 Similarly, fluorescence microscopy of

GFP-WDR11 transfected into U2OS cells also yielded a

cytoplasmic localization, whereas HA-EMX1 localized to

the nucleus. However, when these cells were treated

with leptomycin B, an inhibitor of nuclear export, both

HA-EMX1 and GFP-WDR11 colocalized in the nucleus
an Journal of Human Genetics 87, 465–479, October 8, 2010 473
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Figure 5. The WDR11 Interacts and Co-
localizes with EMX1 In Vivo and In Vitro
(A) EMX1 was identified in the yeast two-
hybrid screen as a WDR11-interacting
protein. The specific interactions between
these two proteins were confirmed by
streaking of transformed yeast cells onto
synthetic drop-out plates lacking TL (Trp/
Leu) or TLH (Trp/Leu/His). Yeast AH109
cells were transformed with empty vectors
(pGBKT7 and pGAD), and plasmids encod-
ing SV40 T antigen (pTD1) and p53
(pGBKT7-p53) were utilized as a negative
and positive control, respectively.
(B) Myc-WDR11 expression plasmids were
transfected alone or along with HA-EMX1
into HeLa cells, the cell lysates were
immunoprecipitated with anti-Myc anti-
body, and coprecipitated HA-EMX1 was
detected via immunoblotting with anti-
HA antibody.
(C) In-vitro-translated Myc-EMX1 was
subjected to GST pull-down analysis with
GST (lane 2) or GST-WDR11 (lane 3). The
bound proteins were detected via immu-
noblotting with anti-Myc antibody.
(D) HA-EMX1 and GFP-WDR11 expression
plasmids were transfected into U2OS cells,
and then cells were treated with leptomy-
cin B (LMB), an inhibitor of nuclear export.
Fluorescence microscopy analysis helped
determine localizations of HA-EMX1 and
GFP-WDR11. Nuclei were stained with
DAPI.
(E) Wild-typeMyc-WDR11 and its deletion
mutants were synthesized in vitro and sub-
jected to a GST pull-down assay with GST

(center panel) or GST-WDR11 (right panel). The N,M, and C denote theWDR11N terminus (amino acids 1–361),middle portion (amino
acids 362–830), and C terminus (amino acids 831–1224), respectively. The positions of missensemutations foundwithin the N terminus
and central region of WDR11 in IHH patients are marked as m1 through m4 on the schematic diagrams of WDR11.
(F) The wild-type andmissensemutantWDR11 expression plasmids were transfected into HEK293 cells alongwith HA-EMX1 expression
plasmids. The cell lysates were immunoprecipitated with anti-Myc antibody, and the association of EMX1 with wild-type WDR11 or
missense mutants was determined via immunoblot analysis with anti-HA antibody.
(Figure 5D), suggesting that WDR11 might be shuttling

between the nucleus and cytoplasm. When each of the

five WDR11 missense mutants was transfected into

FCNB4-hTERT cells, none altered subcellular localization

of the protein (data not shown).

Mouse and Zebrafish Whole-Mount In Situ

Hybridization

To investigate the developmental expression ofWdr11, we

performed whole-mount in situ hybridization analysis in

mouse embryos from days E10.5–E14.5. The pattern of

expression observed was consistent with a role for

WDR11 in IHH and KS. As early as E10.5, the entire devel-

oping central nervous system, except for the spinal

cord, revealedWdr11 expression (Figures 6A–6C). The neu-

roepithelium, including the diencephalic region that gives

rise to hypothalamic neurons where GnRH neurons reside,

stained strongly for Wdr11 at E11.5 and E12.5. Mouse

neuroendocrine GnRH neurons migrate from the olfactory

placode region alongside olfactory neurons to cross the

cribriform plate and finally reach the hypothalamus,
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a process that is active from E10.5–E14.5 and is usually

completed by E18.5.45 At E14.5 high levels of Wdr11

expression were particularly noteworthy in the developing

cortex and the olfactory bulb (Figures 6D and 6E). In the

adult brain, intense Wdr11 expression was restricted to

the olfactory bulb, the olfaction-related piriform cortex

(Figure 6F), the granule cell layer of the cerebellum, and

neurons of the hippocampal formation (Figure 6G).

Increased signal intensities within the hypothalamus

were observed with 35S-UTP labeled Wdr11 antisense

probes (Figure 6G). For higher-resolution images of this

region, digoxigenin labeling of sagittal sections of adult

brains demonstrated signals scattered throughout the

hypothalamus, sometimes in clusters of neurons

(Figure 6H). Notably, in mouse, Emx1 expression is also

detectable from day 9.5 of gestation in the presumptive

cerebral cortex and olfactory bulbs.46

In the zebrafish, wdr11 was expressed ubiquitously at

24 hpf; whereas emx1 was highly expressed in the fore-

brain, and a small group of cells was clustered around

the same area of the diencephalic GnRH3 neurons at
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Figure 7. Expression of wdr11 in Developing Zebrafish Embryos
At 24 hpf, wdr11 transcripts were broadly detected in forebrain,
midbrain, and hindbrain.
(A, B, and E) Lateral view; anterior is to the left. (C and D) Dorsal
view. The expression domain of wdr11 in the brain partially over-
lappedwith that of emx1 (B and D), a dorsal telencephalonmarker.
Abbreviations are as follows: dt, dorsal telencephalon; f, forebrain;
m, midbrain; h, hindbrain; mhb, midbrain-hindbrain boundary;
vt, ventral telencephalon; and ret, retina.

Figure 6. Wdr11 Expression during Murine Development
(A–E) DIG-labeled whole-mount in situ hybridization with a
Wdr11 antisense probe at different embryonic stages. High expres-
sion levels are found in all structures of the developing brain as
early as E10.5. Expression in the limbs is prominent at E12.5
and E13.5. Staining was also observed in both the hind and
forelimb buds, but as limbs developed, it shifted toward the
terminal phalanges. At E14.5 the olfactory bulb and the devel-
oping cortex show the highest expression levels. A magnification
of the developing cortex and olfactory bulb is shown in (E).
(F–H) Expression of Wdr11 in the adult brain. [35S]-UTP-labeled
in situ hybridizations show prominent Wdr11 signals in the piri-
form cortex (F) as well as in the hippocampus and cerebellum
(G). Note the higher signal intensity in the hypothalamic region
within the dotted rectangle in (G). Single cells as well as clusters
of neurons within the hypothalamic nuclei also showed Wdr11
expression in DIG-labeled cryosections (H). Signals were absent
with the sense control. Abbreviations are as follows: tel, telence-
phalic vesicle; wh, wall of hindbrain; di, diencephalon; mes,
mesencephalon; rho, rhombencephalon; sc, spinal cord; lb, limb
bud; hl, hind limb; fl, fore limb; ob, olfactory bulb; pc, piriform
cortex; gcl, granule cell layer of the cerebellum; hp, hippocampus;
and hy, hypothalamus.
30–36 hpf (Figure 7), again consistent with a potential role

for a WDR11-EMX1 protein interaction.
Discussion

Our mapping, cloning, and sequencing of the breakpoints

of the de novo balanced chromosome translocation from

a KS male with karyotype 46,XY,t(10;12)(q26.12;q13.11)

dn and the consequent detection of multiple independent

missense variants inWDR11 in KS and IHH patients argues

strongly for a causative role for WDR11 in this disorder.

Regrettably, DNA samples of the patients’ parents are not
The Americ
available, and all efforts to track the parents have been

unsuccessful. However, because all WDR11 mutations

were heterozygous, autosomal-dominant inheritance of

the IHH phenotype is likely. Consistent with this interpre-

tation, no WDR11 mutation was found in any of 29 exons

or splice junctions on the untranslocated second allele

from our translocation patient, suggesting that a reduction

in functional WDR11 as a result of dysregulation of the

gene via a position effect of the translocation is the cause

of KS in this subject (see Results and Figure S3). The

absence of truncating nonsense and frameshift mutations

indicates that these might produce a more severe pheno-

type or embryonic lethality.

WDR11 was originally identified as a potential tumor

suppressor by positional cloning of a somatically acquired

t(10;19) chromosome translocation that generated an

intragenic deletion in human glioblastoma cells.47 This

deletion disrupted WDR11 and fused it to the ZNF320

gene (MIM 606427). Interestingly, other genes associated

withmammalian puberty are also known for their involve-

ment in tumorigenesis.48 For example, hypothalamic

expression of certain tumor suppressor genes is increased

at puberty in monkeys or decreased in mice with delayed

puberty.49 Similarly, KISS1 (MIM 603286), a tumor metas-

tasis suppressor gene50 in melanomas51 and breast carci-

nomas52 encodes the peptide ligand of G-protein-coupled
an Journal of Human Genetics 87, 465–479, October 8, 2010 475



receptor 54 (GPR54),53 which plays a critical role in the

initiation of puberty. KISS1R (encoding GPR54) mutations

cause autosomal-recessive IHH in consanguineous families

and mice.7,8

WDR11’s function is unknown, but it contains twelve

WD domains and is highly conserved throughout verte-

brate evolution. The gene was previously annotated as

BRWD2 (Bromodomain and WD repeat domain contain-

ing 2) but has recently beenmore appropriately designated

WDR11 because it has WD domains but no Bromo

domains.54 Mutations of other WD proteins have been

associated previously with mammalian reproduction.

Both genders of Repro5 mice, which have ENU-induced

Brwd1 (Wdr9) mutations, demonstrate infertility. In addi-

tion, patients with mutations of BRWD3 (MIM 300553)

have undescended testes and minimal facial or axillary

hair.55 However, this is the first report of a specific role

for a WD protein in IHH or KS, and it implicates protein-

protein interaction mediated by WD repeats of WDR11

as a critical requirement for normal puberty.

Proteins with repeated WD domains, each of which

consists of four antiparallel b strands, form b propeller

structures to support interactions with protein-binding

partners and to organize and stabilize multiprotein

complexes.56 A b propeller is characterized by 4–8 blade-

shaped b sheets arranged around a central axis; each sheet

of four antiparallel b strands is twisted so that the first and

fourth sheets are close to perpendicular. The last b strand of

one WD repeat, and the first three b strands of the WD

repeat form a blade of the b propeller (Figure 4A).

Three of the WDR11 missense mutations leading to

R395W, H690Q, and F1150L alter amino acid residues

that are completely conserved in all 13 available mamma-

lian and avian orthologs (human, chimpanzee, cow,

horse, panda, pig, dog, rat, mouse, rabbit, opossum,

chicken, and finch), and a fourth change, A435T, is shared

in 11 out of 13 species, suggesting that these substitutions

in six independent sporadic patients are very to be detri-

mental. Three of the missense alterations are located

directly in the predicted propeller regions of WDR11:

A435T and R448Q are in the sixth WD domain, and

H690Q is in the ninth WD domain (Figure 4B). These

three mutations are predicted by SPPIDER to alter pro-

tein-protein binding domains defined by protein model-

ing and therefore are likely to disrupt normal protein

function (Figure S5).

The similarity in structural modeling between WDR11

and the known structure of AIP1 suggests that WDR11,

like AIP1, may form a dimer stabilized by interaction

with two zinc ions (Figure S6). Because the two protein

structures are not identical, deviations arising from their

alignment make the position of the Zn ion uncertain to

a few angstroms (Figure S4). However, WDR11 has the

required residues (Asp377, Glu384, His501, His508, and

Glu510) for zinc binding in the vicinity of the putative

zinc position (Figure S7). The R448Q mutation is less

than 5 Å from the predicted zinc binding site. Arg residues
476 The American Journal of Human Genetics 87, 465–479, October
near Zn coordination sites do not directly interact with the

Zn, but they stabilize their environment because Arg is

highly positively charged. Replacing Arg with the much

smaller Gln residue could influence the zinc-binding

propensity of WDR11 and affect its dimer formation and

interactions, including a potential actin interaction pre-

dicted by analogy with AIP1.57

In view of the importance of protein-protein interac-

tions for the function of WD proteins, we sought binding

partners for WDR11 and identified the transcription factor

EMX1 as a novel interactor. EMX1 is a homeobox tran-

scription factor involved in specifying cell fates in the

developing central nervous system,39 and it participates

in the development of olfactory neurons.40 This putative

transcription factor has been shown to be one of the down-

stream target genes for Gli-Kruppel family member 3 (Gli3,

MIM 165240) transcription factor,41,42 which is a part of

the Sonic hedgehog-Patched-Gli (Shh-Ptch-Gli) signaling

pathway43 important in endocrine signaling.

Analysis of the expression patterns ofWDR11 in human

embryonic olfactory GnRH neuroblasts as well as in mouse

and zebrafish development revealed overlapping patterns

of expression with EMX1 in regions critical for formation

of the hypothalamus,45 supporting the opportunity for

the two proteins to interact in vivo and to act together

during development. Deletion analysis revealed that

WDR11 interacts with EMX1 via both its N terminus

and its central region, where four (R395W, A435T,

R448Q, and H690Q) of the five WDR11 missense alter-

ations were found. R448Q reduced and both A435T and

H690Q abolished binding to EMX1, physically decreasing

the opportunity for productive interaction. Interestingly,

the mutant R395W did not appear to affect EMX1

binding, but this represents alteration of an amino acid

that is invariant in higher vertebrates, suggesting that

this alteration permits binding but impairs the as-yet-

undefined functional consequences of the WDR11-EMX1

interaction.

Taken together, our genetic and functional data provide

strong evidence for missense sequence variants of WDR11

as a cause of IHH and KS in a proportion of cases of this

genetically heterogeneous condition. This adds to the

growing list of genes known to be mutated in IHH and

KS and will open new investigative routes for under-

standing the development of normal human puberty and

reproduction. Importantly, the identification of EMX1 as

a binding partner of WDR11 whose interaction can be dis-

rupted by IHH- and KS-associated mutations is significant

for two principal reasons. First, it places WDR11, whose

biological function is not well understood, as a potential

player in the Sonic hedgehog-Patched-Gli-Emx signaling

pathway via its interaction with EMX1. Second, the

demonstration of a developmental role for WDR11 in

IHH and KS suggests a possible connection between Shh

signaling and pubertal development. The potential for

defects in this pathway in IHH and KS is worthy of further

exploration.
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Supplemental Data

Supplemental Data include seven figures and four tables and can

be found with this article online at http://www.cell.com/AJHG/.
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